A weighted residual relationship for the contact problem with Coulomb friction
نویسندگان
چکیده
منابع مشابه
Residual Error Estimators for Coulomb Friction
This paper is concerned with residual error estimators for finite element approximations of Coulomb frictional contact problems. A recent uniqueness result by Renard in [72] for the continuous problem allows us to perform an a posteriori error analysis. We propose, study and implement numerically two residual error estimators associated with two finite element discretizations. In both cases the...
متن کاملDiscrete Contact Problems with Coulomb Friction
The paper deals with a discrete model of a two-dimensional Signorini problem with Coulomb friction and a coefficient of friction F depending on the spatial variable. It is shown that a solution exists for any F and is unique if F is sufficiently small. We also prove that this unique solution is a Lipschitz continuous function of F . Numerical realization is done by the piecewise smooth Newton m...
متن کاملA Uniqueness Criterion for the Signorini Problem with Coulomb Friction
The purpose of this paper is to study the solutions to the Signorini problem with Coulomb friction (the so-called Coulomb problem). Some optimal a priori estimates are given and a uniqueness criterion is exhibited. Recently, nonuniqueness examples have been presented in the continuous framework. It is proven, here, that if a solutions satisfies a certain hypothesis on the tangential displacemen...
متن کاملPENALTY METHOD FOR UNILATERAL CONTACT PROBLEM WITH COULOMB’S FRICTION FOR LOCKING MATERIAL
In this work, we study a unilateral contact problem with non local friction of Coulombbetween a locking material and a rigid foundation. In the first step , we present the mathematicalmodel for a static process, we establish the variational formulation in the form of a variationalinequality and we prove the existence and uniqueness of the solution. In the second step, usingthe penalty method we...
متن کاملShape Optimization in Three-Dimensional Contact Problems with Coulomb Friction
We study the discretized problem of the shape optimization of three-dimensional elastic bodies in unilateral contact. The aim is to extend existing results to the case of contact problems obeying the Coulomb friction law. Mathematical modelling of the Coulomb friction problem leads to an implicit variational inequality. It is shown that for small coefficients of friction the discretized problem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Structures
سال: 2009
ISSN: 0045-7949
DOI: 10.1016/j.compstruc.2009.08.013